Páginas

domingo, 30 de noviembre de 2025

LA NEBULOSA DE LA TARANTULA.

30 Doradus: la nebulosa de la Tarántula
30 Doradus, la nebulosa de la Tarántula en la Gran Nube de Magallanes
La nebulosa de la Tarántula (30 Doradus) en la Gran Nube de Magallanes. Imagen: ESO/IDA/Danish 1.5 m / R. Gendler, C. C. Thöne, C. Féron & J.-E. Ovaldsen.

30 Doradus: la nebulosa de la Tarántula

Por Barthélemy d’Ans – Planetarium María Reiche & Instituto Peruano de Astronomía (IPA)

1.Una “tarántula” de gas en una galaxia vecina

A primera vista, la imagen muestra un remolino de gas y polvo lleno de filamentos, huecos y nudos brillantes. En el centro, una región casi sobreexpuesta delata la presencia de un cúmulo de estrellas extremadamente masivas y jóvenes. Este conjunto es la famosa nebulosa de la Tarántula, también conocida como 30 Doradus.

La Tarántula no está en nuestra Vía Láctea, sino en la Gran Nube de Magallanes, una galaxia satélite visible desde el hemisferio sur. Se encuentra a unos 170 000 años-luz de la Tierra y forma la esquina sudeste de esa pequeña galaxia.

A pesar de esa enorme distancia, 30 Doradus es tan luminosa que, vista con binoculares desde cielos oscuros australes, aparece como una mancha brillante en el interior de la Gran Nube. Si una región así estuviera tan cerca como la nebulosa de Orión, llenaría un enorme trozo del cielo y sería capaz de proyectar sombras sobre el suelo terrestre.

La escala del objeto es sobrecogedora: el complejo completo de gas ionizado y cúmulos asociados se extiende a lo largo de cientos de años-luz, acercándose al milenio de años-luz de diámetro. Es, en pocas palabras, una fábrica de estrellas gigantes a escala galáctica.

2.Una fábrica de estrellas masivas

El corazón energético de la Tarántula es el cúmulo R136, escondido en la zona central más brillante de la imagen. Este cúmulo joven, de apenas unos uno a dos millones de años, alberga decenas de estrellas que superan las 50 masas solares y varias que probablemente nacieron con más de 100 Soles.

Entre ellas destaca R136a1, una de las estrellas más masivas y luminosas conocidas. Estas estrellas monstruosas emiten enormes cantidades de radiación ultravioleta y vientos estelares que arrancan y comprimen el gas circundante, esculpiendo la intrincada red de filamentos y cavidades que vemos en la nebulosa.

Más lejos del núcleo joven se encuentra otro cúmulo, Hodge 301, mucho más envejecido. Se estima que decenas de sus estrellas más masivas ya explotaron como supernovas, inyectando energía y metales pesados en el gas. En las afueras del complejo se sitúa también la famosa supernova 1987A, la explosión estelar más cercana observada desde la invención del telescopio.

30 Doradus es así un laboratorio de múltiples generaciones estelares: estrellas que nacen, otras que ya han muerto y ondas de choque que desencadenan nuevos episodios de formación estelar. Algo similar debió ocurrir en las galaxias del Universo temprano, cuando los ritmos de nacimiento de estrellas eran muchos más intensos que hoy.

3.Gas, polvo y colores en la imagen

Aunque la Tarántula es, físicamente, una enorme región H II (gas de hidrógeno ionizado), la imagen de ESO que encabeza esta cartilla se obtuvo en colores casi naturales, combinando filtros ópticos B, V y R. El resultado es un retrato que se acerca a lo que veríamos con una cámara muy sensible y un telescopio de gran apertura.

En términos físicos:

  • Las zonas amarillas y anaranjadas muestran gas de hidrógeno y oxígeno ionizados, iluminados por la radiación ultravioleta de las estrellas jóvenes.
  • Las regiones marrones y verdosas corresponden a mezclas de gas y polvo interestelar, que absorben y dispersan parte de la luz.
  • Los núcleos blancos-azulados marcan los cúmulos estelares más densos, donde se concentran las estrellas más calientes y masivas.

El conjunto está lejos de ser homogéneo: encontramos cavidades excavadas por vientos y supernovas, pilares y columnas de gas denso donde todavía se gestan nuevas estrellas y una gran cantidad de pequeñas nubes oscuras, las globuletas, que podrían albergar sistemas estelares en formación.

Vistas en otras longitudes de onda, como el infrarrojo, estas estructuras revelan aún más detalles: estrellas recién nacidas que permanecían ocultas tras el polvo, filamentos fríos que servirán de materia prima para futuras generaciones y conchas de gas expulsadas por estrellas masivas moribundas.

4.Cómo se obtuvo esta imagen de ESO

La imagen que abre este artículo fue tomada con el telescopio Danish 1.54 m del observatorio de La Silla (ESO, Chile). Aunque se trata de un telescopio relativamente modesto comparado con los gigantes de 8–10 metros, su óptica de calidad y su cámara CCD permiten registrar detalles finos en objetos extensos como la Tarántula.

Datos técnicos (versión resumida):

  • Telescopio reflector Danish 1.54 m en La Silla.
  • Exposiciones de decenas de segundos en filtros de banda ancha B (azul), V (verde) y R (rojo), combinadas para producir una imagen de alto contraste.
  • Procesado digital cuidadoso para equilibrar el brillo extremo del núcleo con las estructuras de bajo brillo superficial en la periferia.

Aunque hoy disponemos de imágenes mucho más profundas y extensas obtenidas con el Hubble y el James Webb, esta composición de ESO mantiene un gran valor didáctico: muestra, en un solo campo, la conexión íntima entre cúmulos estelares, gas ionizado y polvo, sin recurrir a paletas de color demasiado alejadas de la percepción humana.

Crédito sugerido si usas esta versión de la imagen: Imagen: ESO/IDA/Danish 1.5 m / R. Gendler, C. C. Thöne, C. Féron & J.-E. Ovaldsen.

5.30 Doradus en contexto astronómico

Desde el punto de vista de la astrofísica de galaxias, 30 Doradus es un ejemplo extremo de región de estallido de formación estelar (starburst) en el entorno local.

Algunos parámetros físicos aproximados:

  • Tipo de objeto: gran región H II y complejo de cúmulos estelares en la Gran Nube de Magallanes.
  • Distancia:170 000 años-luz.
  • Tamaño angular: alrededor de 40′ × 25′ para la zona más brillante; el complejo completo se extiende aún más.
  • Tamaño físico: varios cientos de años-luz; el radio efectivo del gas ionizado es del orden de 900 años-luz.
  • Brillo integrado: magnitud aparente cercana a 8; extremadamente luminoso para un objeto no estelar a esa distancia.

Comparada con regiones de nuestra propia galaxia:

  • Es mucho más grande y activa que la nebulosa de Orión (M42), el vivero estelar masivo más cercano a la Tierra.
  • No se conoce en la Vía Láctea ninguna región de formación estelar tan luminosa y prolífica como 30 Doradus.

La Tarántula es, por tanto, una ventana privilegiada para estudiar:

  • cómo se forman y evolucionan las estrellas extremadamente masivas;
  • el efecto combinado de sus vientos, radiación y supernovas sobre el gas de la galaxia anfitriona;
  • procesos de formación estelar similares a los que debieron dominar en el Universo temprano, cuando las tasas de formación de estrellas eran más elevadas.

6.Rincón para astrofotógrafos

Para quienes observan desde el hemisferio sur, la nebulosa de la Tarántula es uno de los objetivos más espectaculares de la Gran Nube de Magallanes.

Coordenadas aproximadas (J2000):
AR ≈ 05h 38m 43s — Dec ≈ −69° 06′

Desde latitudes medias australes, la Tarántula alcanza buena altura sobre el horizonte sur durante las noches de verano e inicio del otoño del hemisferio sur (diciembre–marzo). En latitudes tropicales del hemisferio sur, como la costa peruana, culmina a unos 30–40° de altura, suficiente para astrofotografía con cielos transparentes y oscuros.

Equipo y encuadre:

  • Un objetivo de 50–135 mm permite registrar la Gran Nube de Magallanes completa, con la Tarántula como un núcleo brillante.
  • Telescopios de 300–600 mm de distancia focal (en sensor APS-C o full frame) encuadran la nebulosa con buenos márgenes y resuelven filamentos y cúmulos.
  • Equipos de mayor focal (800–1200 mm) se centran en el núcleo de 30 Doradus y el cúmulo R136, a costa de perder el contexto de la galaxia.

Filtros y tiempos de integración:

  • Bajo cielos oscuros, puede obtenerse una imagen vistosa solo con RGB o banda ancha; el brillo de la Tarántula ayuda mucho.
  • Con contaminación lumínica o para resaltar el gas, los filtros y [O III] son especialmente útiles; un canal adicional [S II] permite composiciones tipo SHO.
  • Para un buen detalle en los filamentos y en el entorno de 30 Doradus, son recomendables varias horas de integración total (3–8 h o más), equilibrando el tiempo entre canales.

Consejos de procesado:

  • Usar reducción selectiva de estrellas para que la multitud de estrellas de la Gran Nube no compita visualmente con la nebulosa.
  • Aplicar máscaras de contraste local para realzar los pilares, cavidades y bordes de las burbujas sin saturar el núcleo.
  • Cuidar el equilibrio de color: la Tarántula admite paletas muy contrastadas, pero un leve toque cálido en el gas y tonos fríos en las estrellas suele dar un resultado agradable y didáctico.

Con paciencia y buen cielo, la nebulosa de la Tarántula se convierte en una de las imágenes más espectaculares que puede lograr un astrofotógrafo desde el hemisferio sur.

7.Para saber más

Si quieres profundizar en la física de 30 Doradus y explorar otras imágenes complementarias:

Barthélemy d´Ans (c) 2025 Instituto Peruano de astronomía / Planetarium María Reiche.

sábado, 29 de noviembre de 2025

PERIGEO Y APOGEO DE LA LUNA.

Perigeo y apogeo de la Luna — Planetarium María Reiche
Planetarium María Reiche — Órbita y distancias lunares

Perigeo y apogeo de la Luna: ¿por qué a veces la vemos más grande?

La órbita de la Luna no es un círculo perfecto, sino una elipse. Eso hace que, a lo largo del mes, la distancia entre la Tierra y la Luna cambie: a veces está un poco más cerca (perigeo) y a veces un poco más lejos (apogeo). Esta cartilla explica qué significan estos términos, cómo afectan al tamaño aparente de la Luna, a las mareas y a fenómenos populares como las “superlunas”.

Nivel sugerido: secundaria / público general Temas: órbita lunar, mareas, superlunas
1

¿Qué son el perigeo y el apogeo?

La Luna gira alrededor de la Tierra describiendo una órbita que es ligeramente elíptica, no un círculo perfecto.

  • Perigeo: momento en que la Luna se encuentra más cerca de la Tierra en su órbita.
  • Apogeo: momento en que la Luna se encuentra más lejos de la Tierra.

En números redondos:

  • Perigeo típico: alrededor de 363 000 km.
  • Apogeo típico: alrededor de 405 000 km.

La diferencia es de decenas de miles de kilómetros, suficiente para que la Luna se vea hasta un 14 % más grande y casi un 30 % más brillante en perigeo que en apogeo, si la comparamos cuidadosamente.

2

Órbita elíptica: la Luna no describe un círculo perfecto

La órbita de la Luna es una elipse con la Tierra situada cerca de uno de sus focos. La “forma” de la elipse se describe con un número llamado excentricidad.

  • Una excentricidad de 0 corresponde a un círculo perfecto.
  • La excentricidad de la órbita lunar es de alrededor de 0,055: no es muy grande, pero suficiente para producir diferencias apreciables de distancia.

Además, la elipse de la órbita lunar:

  • Gira lentamente en el espacio (precesión de la línea de los ápsides).
  • Está inclinada unos respecto al plano de la órbita de la Tierra alrededor del Sol (la eclíptica).

Todo esto hace que las combinaciones de fase (Llena, Nueva, etc.) y distancia (perigeo/apogeo) vayan cambiando de un mes a otro.

3

¿Cuánto cambia realmente el tamaño de la Luna en el cielo?

La Luna nos parece casi del mismo tamaño todas las noches, pero si medimos con precisión su diámetro angular (tamaño aparente en grados), encontramos diferencias claras:

  • En perigeo, el diámetro aparente puede ser de ~33,5 minutos de arco.
  • En apogeo, baja a ~29,5 minutos de arco.

Nuestro ojo, sin referencia directa, no distingue fácilmente ese cambio con una sola mirada. Sin embargo, si comparamos fotos tomadas con la misma cámara y el mismo encuadre, la diferencia se vuelve obvia.

El famoso “efecto Luna enorme en el horizonte” no se debe al perigeo, sino a un truco de nuestro cerebro (ilusión de la Luna), que interpreta distinto el tamaño de los objetos cerca del horizonte.

4

“Superlunas” y “microlunas”: cuando perigeo y fase se alinean

En los últimos años se han popularizado términos como “superluna” y “microluna”. No son términos oficiales de la Unión Astronómica Internacional, pero se usan habitualmente en divulgación.

  • Se suele llamar superluna a una Luna llena que ocurre cerca del perigeo.
  • Se habla de microluna cuando la Luna llena ocurre cerca del apogeo.

El aumento de brillo y tamaño respecto a una Luna llena “típica” es modesto, pero real. Aun así, el efecto no es tan espectacular como muchas imágenes retocadas que circulan por internet.

Buena actividad para el aula: comparar fotos de varias lunas llenas (en diferentes meses) usando la misma lente y encuadre, y medir su tamaño en píxeles.

5

¿Influye el perigeo en las mareas terrestres?

La fuerza de marea que la Luna ejerce sobre la Tierra depende de su distancia. En perigeo, esa fuerza es algo mayor; en apogeo, algo menor.

Cuando el perigeo coincide con:

  • Una Luna nueva o Luna llena,
  • y a veces con otras alineaciones Tierra–Luna–Sol,

podemos tener mareas vivas un poco más intensas —las llamadas popularmente “mareas de perigeo”.

Sin embargo:

  • La diferencia no es catastrófica; es un refuerzo de mareas ya de por sí altas.
  • No hay evidencia seria de que una superluna desencadene terremotos o erupciones volcánicas.

Es importante distinguir entre un efecto físico real (ligero aumento de la marea) y exageraciones mediáticas que atribuyen a la superluna desastres naturales.

6

Mes sinódico, mes anómalo y por qué las superlunas “van y vienen”

Hay varios “meses” lunares, según qué intervalo midamos:

  • Mes sinódico: tiempo entre dos lunas llenas (~29,53 días).
  • Mes anómalo: tiempo entre dos perigeos (~27,55 días).

Como estas duraciones no son iguales, la fase (Llena, Nueva, etc.) y la posición en la órbita (perigeo/apogeo) se van desfasando con el tiempo.

  • A veces la Luna llena ocurre cerca del perigeo → “superluna”.
  • Otros meses, la Luna llena ocurre cerca del apogeo → “microluna”.

El patrón se repite aproximadamente cada cierto número de meses, dando lugar a ciclos en los que las superlunas parecen “acercarse” y luego “alejarse” de nuestras fechas de observación.

7

Perigeo, apogeo y eclipses: total vs anular

La distancia Tierra–Luna influye también en el tipo de eclipse de Sol que podemos observar:

  • Si la Luna está cerca del perigeo, su disco aparente es ligeramente más grande que el del Sol. En una alineación adecuada, puede causar un eclipse total de Sol.
  • Si la Luna está cerca del apogeo, su disco es algo más pequeño que el del Sol. En ese caso, incluso con alineación perfecta, vemos un eclipse anular.

Para los eclipses de Luna (cuando la Tierra se interpone entre el Sol y la Luna), la distancia también afecta detalles como la duración del eclipse y el tamaño del cono de sombra, pero el fenómeno sigue siendo muy similar a simple vista.

Esta conexión entre órbita elíptica y eclipses es un excelente tema para proyectos de modelado con maquetas o simuladores astronómicos.

8

Cómo observar perigeos y apogeos lunares (y qué no esperar)

Algunas ideas para organizar observaciones o proyectos:

  • Consultar un calendario astronómico o software de planetario para localizar las fechas de perigeo y apogeo.
  • Fotografiar la Luna llena en varias fechas, usando la misma focal y encuadre, y comparar su tamaño en píxeles.
  • Registrar las mareas (si se vive cerca de la costa) y ver cómo cambian alrededor de ciertas superlunas.

Mitos frecuentes que conviene corregir:

  • “En superluna, la gravedad lunar provoca catástrofes”. → En realidad el aumento es pequeño y forma parte de la variabilidad normal de las mareas.
  • “La superluna se ve gigantesca en el horizonte”. → Lo que aumenta dramáticamente es la ilusión de la Luna, no el tamaño físico.

Una actividad interesante es pedir al grupo que recopile titulares sensacionalistas sobre superlunas y que los contraste con datos científicos reales.

9

Preguntas para pensar y debatir

Para el aula, clubes de ciencias o visitas al planetario

  • Si la órbita de la Luna fuese un círculo perfecto, ¿qué fenómenos dejarían de ocurrir o serían diferentes?
  • ¿Crees que tiene sentido hablar de “superlunas” todos los años? ¿Cómo podríamos definir este término de forma más rigurosa?
  • ¿De qué manera influye el perigeo en las mareas, en comparación con la alineación Sol–Tierra–Luna?
  • ¿Por qué algunos eclipses son totales y otros anulares? ¿Qué papel juega la distancia Tierra–Luna en esta diferencia?
  • Diseña un experimento sencillo para demostrar, con fotografías o mediciones, que la Luna cambia de tamaño aparente a lo largo del año.
Guía orientativa para docentes / facilitadores (clic para desplegar)

Estas sugerencias no son respuestas únicas, sino apoyos para guiar la discusión y los proyectos de investigación.

Pregunta 1 — ¿Órbita circular vs elíptica?

  • Con órbita circular: no habría perigeo/apogeo, el tamaño aparente de la Luna sería casi constante.
  • La diferencia entre eclipses totales y anulares sería mucho menor o no existiría.
  • Permite conectar con otros cuerpos del Sistema Solar que sí tienen órbitas más excéntricas.

Pregunta 2 — Definiendo “superluna” con más rigor

  • Se puede proponer un umbral de distancia: por ejemplo, lunas llenas dentro del 10 % del perigeo más cercano de ese año.
  • Invitar al grupo a revisar cómo distintos autores definen superluna y a construir una definición propia con criterios medibles.

Pregunta 3 — Mareas y perigeo vs alineación

  • Subrayar que la fase lunar (nueva/llena) y la alineación con el Sol tienen un efecto muy importante.
  • El perigeo actúa como un “extra” sobre esa marea ya alta, no como causa única.

Pregunta 4 — Eclipses totales vs anulares

  • Con perigeo: la Luna cubre completamente el disco solar → eclipse total.
  • Con apogeo: la Luna no llega a tapar todo el Sol → anillo brillante → eclipse anular.
  • Puede acompañarse de modelos de cartón o simulaciones digitales.

Pregunta 5 — Experimento fotográfico

  • Proponer un calendario de observación de varias lunas llenas a lo largo del año.
  • Tomar fotos siempre con el mismo equipo y configuración, luego medir el diámetro en píxeles y graficar los resultados frente a la fecha o la distancia teórica.

Se puede complementar con la construcción de una línea de tiempo donde se marquen perigeos, apogeos, lunas llenas, eclipses y mareas vivas en un mismo gráfico.

10

Mini glosario

Perigeo: punto de la órbita lunar en el que la Luna está más cerca de la Tierra.

Apogeo: punto de la órbita lunar en el que la Luna está más lejos de la Tierra.

Órbita elíptica: trayectoria con forma de elipse; la órbita de la Luna alrededor de la Tierra es de este tipo.

Excentricidad: número que indica cuánto se aparta una elipse de un círculo perfecto.

Diámetro angular: tamaño aparente de un objeto en el cielo, medido en grados o minutos de arco.

Marea viva: marea de gran amplitud que ocurre cuando el Sol, la Tierra y la Luna están alineados (Luna nueva o llena).

Superluna: término popular para una Luna llena que ocurre cerca del perigeo, haciéndola ligeramente más grande y brillante de lo habitual.

Recuadro de imágenes

Perigeo, apogeo y efectos observables

Ilustración con la Tierra al centro y la Luna en perigeo y apogeo con sus distancias en kilómetros
Figura 1. Distancias de la Luna en perigeo y apogeo (en km). La ilustración muestra a la Tierra en el centro y las posiciones de la Luna más cercana (~363 300 km) y más lejana (~405 500 km), destacando la diferencia típica entre ambos puntos de la órbita.
Crédito: Barthélemy d´Ans – Perigeo y apogeo: distancias típicas Luna–Tierra.
Comparación de la Luna en superluna y en microluna en el mismo encuadre, imagen NASA
Figura 2. Comparación de la Luna en una superluna (perigeo) y en una microluna (apogeo), usando el mismo encuadre. La Luna en perigeo se ve visiblemente más grande y brillante que en apogeo, confirmando la diferencia de tamaño aparente debida a la órbita elíptica.
Crédito: NASA / Goddard Space Flight Center / LRO (composición divulgativa).
Comparación de un eclipse total de Sol, un eclipse anular y uno parcial
Figura 3. Comparación entre un eclipse total de Sol, un eclipse anular y un eclipse parcial. Cuando la Luna está algo más lejos (cerca del apogeo), el disco lunar no alcanza a cubrir todo el Sol y se observa un anillo brillante: eclipse anular. Con la Luna más cercana (perigeo), puede producirse un eclipse total.
Crédito: Perfil.com (composición “eclipses total, parcial y anular”) / Planetarium María Reiche (adaptación educativa).
Ref

Referencias científicas sugeridas (lectura avanzada)

Para docentes, estudiantes avanzados o lectoras/es que deseen profundizar en el tema de la órbita lunar, perigeo, apogeo y mareas.

  1. Meeus, J. (1998). Astronomical Algorithms (2nd ed.). Richmond, VA: Willmann-Bell.
  2. Seidelmann, P. K. (Ed.). (2005). Explanatory Supplement to the Astronomical Almanac (3rd ed.). University Science Books.
  3. Espenak, F., & Meeus, J. (2009). Five Millennium Canon of Solar Eclipses: -1999 to +3000. NASA Technical Publication.
  4. Cartwright, D. E., & Ray, R. D. (1991). Energetics of global ocean tides from Geosat altimetry. Journal of Geophysical Research: Oceans, 96(C8), 16897–16912.
  5. NASA (s. f.). Supermoons and tides. Material divulgativo disponible en los portales educativos de la NASA sobre la relación entre superlunas y variaciones de mareas.

Cartilla educativa: Perigeo y apogeo de la Luna: ¿por qué a veces la vemos más grande?
Material de apoyo para actividades de divulgación y talleres del Planetarium María Reiche e Instituto Peruano de Astronomía.

Autoría y adaptación: Barthélemy d’Ans — Planetarium María Reiche — Instituto Peruano de Astronomía.

CALCULADORA DE MICRO Y SUPER LUNA DE UN AÑO DADO.

Planetarium — Calculadora de superlunas y microlunas (v1)

Calculadora de superlunas y microlunas — Supermoon-tool (v1)

Objetivo: para un año dado, identificar la superluna (Luna llena más cercana a la Tierra) y la microluna (Luna llena más lejana), estimando distancia, fase y tamaño aparente.

1) Parámetros del año y criterio

A2 (estricto): se consideran solo las Lunas llenas con ≥ 98 % del disco iluminado. Entre ellas, la más cercana es la superluna del año y la más lejana la microluna.

2) Resultados principales del año

Superluna del año Luna llena más cercana

Microluna del año Luna llena más lejana

Perigeo y apogeo aproximados del año (modelo analítico ELP truncado)

3) Lunas llenas del año (según criterio)

# Fecha Dist. (km) Fase (%) Tamaño (′) Nota

4) Gráficos: ciclo anual

4.1 Diagrama radial — Lunas llenas según distancia

Cada punto es una Luna llena. El ángulo indica la fecha dentro del año; la distancia radial se escala con el tamaño aparente. Verde = superluna, rojo = microluna.

4.2 Gráfico de distancia día a día

Curva azul: distancia geocéntrica Tierra–Luna (km) cada día del año. Punto verde = perigeo más cercano; punto rojo = apogeo más lejano.

📘 Método y fórmulas (modelo lunar simplificado)

Esta calculadora usa un modelo analítico basado en ciclos lunares medios y en una versión truncada del modelo ELP (Chapront-Touzé & Chapront), tal como se resume en la literatura moderna de efemérides lunares.

1. Tiempo y fechas

• Se convierte cada fecha del año a fecha juliana JD a las 00:00 UT.
• Referencia J2000:
    JD₀(2000-01-01 0h) = 2451544.5
• Referencia de novilunio:
    JDₙ (Nueva Luna) ~ 2451550.1  (2000-01-06 18:14 UT)

2. Fase sinódica y fracción iluminada

d   = JD − JDₙ
P   = 29.53058867   días (mes sinódico medio)
L   = d / P         (número de lunación)
f   = frac(L)       (parte fraccionaria, 0→Nueva, 0.5→Llena)

Fracción iluminada k (Meeus, fase idealizada):
k = (1 − cos(2π f)) / 2

Criterio de "Luna llena":
k ≥ k_min  y  k es máximo local en el año
donde k_min depende del modo A1/A2/A3.

3. Distancia Tierra–Luna (ELP truncado)

Se usa una expresión armónica en función del tiempo t (días desde 2000-01-01 0h):

t  = JD − JD₀(2000-01-01 0h)

G  = 134.96341138° + 13.06499295363° · t   (anomalía media de la Luna)
D  = 297.85020420° + 12.19074911750° · t   (elongación media Luna–Sol)

r ~ 385000.5584
     − 20905.3550 cos(G)
     −  3699.1109 cos(2D − G)
     −  2955.9676 cos(2D)
     −   569.9251 cos(2G)          [km]

Esta forma truncada del modelo ELP reproduce las distancias de efemérides numéricas modernas con errores típicos de pocos kilómetros en el rango 1900–2100, más que suficiente para distinguir superlunas y microlunas.

4. Tamaño aparente

Tamaño medio de la Luna llena:
   θ₀ ~ 0.5181°   a 384400 km

Se escala con la distancia:
   θ  ~ θ₀ · (384400 / r)      [grados]
   θ′ ~ θ · 60                 [arcmin]

5. Selección de superluna y microluna

  • Se listan todas las Lunas llenas del año que cumplen el criterio de fase.
  • Entre ellas:
    • Superluna = la de menor distancia r.
    • Microluna = la de mayor distancia r.
  • Se calcula, además, el perigeo y apogeo extremos del año (mínimo y máximo de r en todos los días).

🧾 Definiciones, criterios A1/A2/A3 y uso práctico

Modos de criterio

  • A1 — Divulgativo: k ≥ 90 %. Emula el uso popular de “superluna” en medios: cualquier Luna muy cercana al plenilunio entra en la lista.
  • A2 — Estricto (por defecto): k ≥ 98 %. Solo se consideran Lunas muy cercanas al máximo de iluminación, adecuado para divulgación científica y fichas técnicas.
  • A3 — Personalizado: eliges kmín (por ejemplo 95 %), útil para comparar distintos años o ajustar al criterio de una publicación concreta.

Qué te entrega la calculadora

  • Fecha de la superluna del año y de la microluna, con distancia, fase y tamaño aparente.
  • Tabla de todas las Lunas llenas del año, indicando cuáles caen en perigeo relativo (más grandes) o apogeo relativo (más pequeñas).
  • Un gráfico radial para visualizar cómo se distribuyen las Lunas llenas alrededor del año (cuándo se concentran las más grandes o más pequeñas).
  • Un gráfico de distancia día a día, con el perigeo y apogeo anuales marcados.

Ideas para uso en patrimonio y divulgación

  • Preparar cartillas anuales de observación de la Luna para colegios o turistas.
  • Relacionar superlunas con eventos culturales locales (festividades, campañas de visita nocturna a sitios arqueológicos, etc.).
  • Comparar el diseño de calendarios visuales (por ejemplo, murales en templos) con la distribución anual de Lunas llenas grandes/pequeñas.

🧪 Precisión, rango temporal y limitaciones

  • El modelo está optimizado para años entre 1900 y 2100.
  • Los errores típicos en distancia son de pocos kilómetros frente a efemérides numéricas modernas, lo que es más que suficiente para distinguir superlunas y microlunas a nivel divulgativo y docente.
  • La hora exacta de la Luna llena no se calcula aquí; se toma el día en que la fase es máxima y cumple el criterio. En la práctica, la diferencia suele ser < 1 día respecto a efemérides oficiales.
  • Las distancias son geocéntricas (centro de la Tierra). Un observador a nivel del suelo verá variaciones de hasta ~6000 km según la posición de la Luna en el cielo, efecto que no es crítico para fines educativos.
  • Para aplicaciones de navegación o astrometría de alta precisión, es preferible usar efemérides numéricas completas (por ejemplo JPL DE440/441).
Planetarium María Reiche Planetarium María Reiche — Barthélemy d’Ans.
APA 7: d’Ans, B. (2025). Calculadora de superlunas y microlunas (v1). Planetarium María Reiche & Instituto Peruano de Astronomía.

viernes, 28 de noviembre de 2025

LA NEBULOSA DE LA MANDIBULA "THE JAWS"

PCG 11: la nebulosa anular “The Jaws”
PCG 11, la nebulosa anular The Jaws
PCG 11 (PHR 1633-4928), nebulosa anular alrededor de una estrella Wolf–Rayet en la constelación de Ara. Imagen: Alexandr Zaytsev & Mark Hanson / ChileScope.

PCG 11: la nebulosa anular “The Jaws”

Por Barthélemy d’Ans – Planetarium María Reiche & Instituto Peruano de Astronomía (IPA)

1.Una “mandíbula” de gas en la Vía Láctea

En la imagen vemos un anillo de gas casi perfecto, con bordes irregulares y un centro oscuro, recortado sobre un campo densísimo de estrellas. Algunos aficionados lo han bautizado “The Jaws”, la “mandíbula”, por la forma de arco brillante que parece abrirse en medio de la nebulosa.

El objeto se conoce formalmente como PCG 11 o PHR 1633-4928. Se trata de una estrella Wolf–Rayet (un tipo de estrella masiva y muy evolucionada) rodeada por una nebulosa anular, es decir, una burbuja de gas y polvo soplada por el viento estelar.

PCG 11 se encuentra en la constelación austral de Ara, muy cerca del famoso campo de NGC 6188, a unos 13 000 años-luz de la Tierra. El anillo que vemos en la imagen tiene un tamaño físico del orden de uno a dos años-luz de diámetro: una “mandíbula” gigantesca excavada en el medio interestelar.

Visto desde lejos, el conjunto recuerda a otras nebulosas producidas por estrellas masivas, como el “Creciente” (NGC 6888), pero PCG 11 destaca por el patrón dentado del borde interior de su anillo, casi como si el gas formara una corona de colmillos mirando hacia la estrella central.

2.Colores y física del anillo

Los colores de esta imagen son el resultado de combinar filtros de banda estrecha (hidrógeno, oxígeno y azufre), mapeados a una paleta de color falso tipo Hubble:

  • (hidrógeno ionizado) se asocia a tonos rojizos y dorados;
  • [O III] (oxígeno doblemente ionizado) aporta los verdes y cian;
  • [S II] (azufre ionizado) refuerza las zonas más profundas del rojo.

Físicamente, el anillo es una capa de gas comprimido que marca la frontera entre el viento estelar de alta velocidad y el medio interestelar más frío y denso. Allí, el gas se calienta e ioniza, emitiendo la luz característica que recogen los filtros.

Un rasgo llamativo de PCG 11 es la presencia de un borde interior “escalopado”: una serie de ondulaciones casi regulares que se repiten alrededor de todo el anillo. Estas “ondas” se interpretan como inestabilidades de Rayleigh–Taylor, un fenómeno que aparece cuando un fluido ligero empuja a otro más denso, generando dedos y estructuras en forma de lenguas de gas.

El interior del anillo, en cambio, se ve relativamente más oscuro: allí el gas ha sido evacuado por el viento de la estrella o está tan caliente y tenue que apenas emite en Hα, dejando la impresión de un hueco negro en medio de la burbuja.

3.La estrella Wolf–Rayet que esculpe la burbuja

En el centro de PCG 11 se encuentra una estrella de tipo Wolf–Rayet WN7h:

  • es una estrella masiva, varias veces más pesada que el Sol;
  • ya ha perdido buena parte de su envoltura externa;
  • presenta vientos estelares extremadamente intensos, que expulsan materia a millones de kilómetros por hora;
  • su atmósfera está enriquecida en helio y nitrógeno, huella de las reacciones nucleares internas.

Antes de esta fase, la estrella probablemente pasó por una etapa de supergigante roja o similar, expulsando una envoltura más lenta y densa. Ahora, el viento rápido de la fase Wolf–Rayet está chocando contra ese material anterior, comprimiéndolo y creando la cáscara brillante que observamos.

A lo largo de miles de años, este proceso esculpe una burbuja más o menos esférica. En PCG 11, sin embargo, la cáscara no es perfectamente uniforme: vemos “soplados” o aperturas en ciertas direcciones, y un borde interior claramente fracturado, lo que indica que la interacción entre el viento estelar y el medio interestelar ha sido muy turbulenta.

En algún momento futuro, la estrella Wolf–Rayet terminará su vida en una supernova. La onda de choque de esa explosión reutilizará, por así decirlo, la estructura de la burbuja preexistente, dando lugar a un remanente aún más complejo.

4.Cómo se obtuvo esta imagen

La imagen que encabeza esta cartilla fue obtenida con uno de los telescopios remotos de ChileScope, situado en el valle de Río Hurtado (Chile), y procesada por Alexandr Zaytsev y Mark Hanson.

Datos técnicos (versión resumida):

  • Telescopio ASA Ritchey–Chrétien RC-1000 de 1 m de apertura a f/6.8.
  • Cámara CCD FLI ProLine 16803, montura de horquilla altacimutal con desrotador.
  • Exposiciones de 1200 s en filtros de banda estrecha Hα, [O III] y [S II], sumando alrededor de 10 h 40 min de integración total a lo largo de varios meses.
  • Procesado en una paleta HOS/SHO (similar a la paleta Hubble), con cuidadoso realce de las estructuras de bajo brillo superficial.

El resultado combina profundidad (gracias al largo tiempo de exposición) con un alto nivel de detalle en el borde del anillo, donde se aprecian claramente las estructuras en forma de dedos y las pequeñas nubes oscuras superpuestas en la línea de visión.

Crédito sugerido si usas esta versión de la imagen: Imagen: Alexandr Zaytsev & Mark Hanson / ChileScope.

5.PCG 11 en contexto astronómico

PCG 11 fue identificado inicialmente como candidata a nebulosa planetaria en el marco del proyecto MASH (Macquarie–AAO–Strasbourg Hα), basado en el sondeo Hα de alta resolución del plano galáctico austral.

Sin embargo, observaciones espectroscópicas detalladas mostraron que su estrella central no es una enana caliente de baja masa (como en las nebulosas planetarias clásicas), sino una estrella Wolf–Rayet de población I, del tipo WN7h. Esto la sitúa en el grupo de burbujas de viento alrededor de estrellas masivas, más que en el de nebulosas planetarias.

Algunos datos físicos relevantes (valores aproximados):

  • Distancia: alrededor de 4 kilopársecs (≈ 13 000 años-luz).
  • Tamaño angular: el anillo principal mide del orden de 1,5–2 minutos de arco en su eje mayor.
  • Tamaño físico: del orden de 1–2 parsecs de diámetro (unos 3–6 años-luz).
  • Espectro nebular: dominado por Hα y [N II], con [S II] débil, lo que es típico de ciertas nebulosas de Wolf–Rayet.

En conjunto, PCG 11 es un laboratorio natural para estudiar:

  • cómo los vientos de estrellas muy masivas dan forma al medio interestelar;
  • la dinámica de inestabilidades en cascarones en expansión;
  • la transición entre nebulosas de origen masivo y objetos que pueden confundirse con nebulosas planetarias en sondeos de amplio campo.

6.Rincón para astrofotógrafos

PCG 11 es un objetivo avanzado, pero muy atractivo, para quienes realizan astrofotografía de cielo profundo desde el hemisferio sur.

Coordenadas aproximadas (J2000):
AR ≈ 16h 33m 49s — Dec ≈ −49° 29′

Se encuentra cerca de la espectacular región de NGC 6188, los “dragones de Ara”; en muchos encuadres de campo amplio aparece como un pequeño anillo brillante en el mismo mosaico.

Requisitos de cielo y equipo:

  • Cielo muy oscuro y buena transparencia. La nebulosa tiene bajo brillo superficial, por lo que sufre mucho con la contaminación lumínica.
  • Telescopios de campo medio (por ejemplo 600–1200 mm de focal en APS-C o full frame) permiten resolver bien la estructura del anillo. También puede capturarse como parte de un mosaico más amplio incluyendo NGC 6188.
  • Montura ecuatorial con buen guiado; los tiempos de exposición recomendados en banda estrecha suelen ser de varios minutos por toma.

Filtros y tiempos de integración:

  • En banda estrecha, conviene usar al menos y [O III]; añadir [S II] abre la puerta a composiciones tipo SHO.
  • Para sacar con claridad el patrón dentado del borde interior, se recomiendan varias horas de integración total (5–10 h o más), equilibrando el tiempo entre los distintos canales.

Procesado sugerido:

  • Realizar una reducción cuidadosa de ruido para preservar las estructuras finas del anillo.
  • Trabajar con máscaras de estrellas y reducción selectiva de su tamaño, para que no compitan con la nebulosa.
  • Usar técnicas de contraste local y curvas suaves para resaltar el borde interior sin “quemar” las zonas más brillantes.

Como muchos objetos asociados a estrellas Wolf–Rayet, PCG 11 recompensa el esfuerzo: tras largas horas de integración y procesado cuidadoso, revela una de las “sonrisas” de gas más intrigantes del cielo austral.

7.Para saber más

Si quieres profundizar en la literatura técnica y en otras versiones de la imagen:

Barthélemy d´Ans (c) 2025 Instituto Peruano de astronomía / Planetarium María Reiche.